起订:1
发货:1天内
车牌识别系统采用高度模块化的设计,将车牌识别过程的各个环节各自作为一个独立的模块。①车辆检测跟踪模块车辆检测跟踪模块主要对视频流进行分析,判断其中车辆的位置,对图像中的车辆进行跟踪,并在车辆位置1佳时刻,记录该车辆的特写图片,由于加入了跟踪模块,系统能够很好地克服各种外界的干扰,使得到更加合理的识别结果,可以检测无牌车辆并输出结果。②车牌定位模块车牌定位模块是一个十分重要的环节,是后续环节的基础,其准确性对整体系统性能的影响巨大。车牌系统完全摒弃了以往的算法思路,实现了一种完全基于学习的多种特征融合的车牌定位新算法,适用于各种复杂的背景环境和不同的摄像角度。
车牌识别系统的关键技术及算法。对车牌图像进行图像形态学操作:图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中消除噪声的不可或缺的操作,其处理的结果的好坏将直接影响到对后续图像进行处理和分析的有效性和可靠性。常用的滤波操作方法有很多种,如中值滤波、形态学滤波、高斯滤波、双边滤波等。我们在这里介绍一下中值滤波和本文所研究系统采用的形态学滤波。
为了进行车牌识别,需要以下几个基本的步骤:1)牌照定位,定位图片中的牌照位置;2)牌照字符分割,把牌照中的字符分割出来;3)牌照字符识别,把分割好的字符进行识别,终组成牌照号码。实际应用中,车牌识别系统的识别率还与牌照质量和拍摄质量密切相关。牌照质量会受到各种因素的影响,如生锈、污损、油漆剥落、字体褪色、牌照被遮挡、牌照倾斜、高亮反光、多牌照、假2牌照等等;实际拍摄过程也会受到环境亮度、拍摄方式、车辆速度等等因素的影响。这些影响因素不同程度上降低了车牌识别的识别率,也正是车牌识别系统的困难和挑战所在。为了提高识别率,除了不断地完善识别算法还应该想办法克服各种光照条件,使采集到的图像利于识别。
车牌识别的发展。在智能化交通管理系统中,汽车身份识别相当于vc++中的“基类”地位,即智能化交通管理系统中的其他子模块需要在汽车身份识别的基础上进行继承和发展。所以我们认为,汽车身份识别要求较高的集成度,1好能由可以嵌入到其他系统中的、集成度高的模块来完成,如单片机、CPLD。而现阶段的汽车身份识别大部分却是依靠计算机来完成的。