起订:1
发货:2天内
基因芯片(又称 DNA 芯片、生物芯片)技术就是顺应这一科学发展要求的产物,它的出现为解决此类问题提供了光辉的前景。该技术系指将大量(通常每平方厘米点阵密度高于 400 )探针分子固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。通俗地说,就是通过微加工技术 ,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2 的硅片、玻片 等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,所以被称为基因芯片。基因芯片主要用于基因检测工作 。
正如电子管电路向晶体管电路和集成电路发展时所经历的那样,核酸杂交技术的集成化也已经和正在使分子生物学技术发生着一场革命。现在全世界已有十多家公司专门从事基因芯片的研究和开发工作,且已有较为成型的产品和设备问世。主要代表为美国 Affymetrix 公司。该公司聚集有多位计算机、数学和分子生物学,其每年的研究经费在一千万美元以上,且已历时六七年之久,拥有多项。
基因芯片又称为DNA微阵列(DNA microarray),可分为三种主要类型:1)固定在聚合物基片(尼龙膜,纤维膜等)表面上的核酸探针或cDNA片段,通常用同位素标记的靶基因与其杂交,通过显影技术进行检测。这种方法的优点是所需检测设备与目前分子生物学所用的显影技术相一致,相对比较成熟。但芯片上探针密度不高,样品和试剂的需求量大,定量检测存在较多问题。
与其他芯片制作技术相比较,微珠芯片具有如下优势:
(1) 密度高微珠芯片的点样密度是原位光合成法的16倍,喷点法的100倍,接触式点样的400倍。
(2)测试重复性好鉴 于超高密度的特点,微珠芯片中每个样品都能保证约30个重复,从而保证测试的高重复性、高重复串以及高可靠性。
(3)定制方便若需要在已完成的芯片中增加测试点或新基因,只要合成相应的微珠加入到微珠混合池中即可。
(四)基因芯片数据分析
基因芯片分析包括五个基本步骤:生物学问题、样品制备、生物化学反应、检测、数据模型分析。基因芯片数据分析包括两部分,数据可靠性分析和生物学意义分析。