8分钟前 常州废酸冷冻结晶报价货真价实 宜兴市凯斯特环保[凯斯特环保机械499557b]内容:
蒸汽消耗3.9吨/小时,用电功率200KW/h
蒸汽按200元/吨,电费按0.6元/kw
则每小时能耗消耗费用共计900元/h
约合每立方水消耗的费用为90元。(不含离心机)
设备投资
主体设备投资350万元(不含安装及离心机部分)
MVR热泵蒸发器+多效蒸发器组合工艺
工艺流程及原理
作为一种节能的蒸发器,MVR热泵蒸发器一般采用的换热器形式为降膜式蒸发工艺,适用于浓度低、无结晶、不容易结壁的物料,所以对于本物料系统,在无结晶浓缩阶段采用MVR蒸发器,在溶液结晶饱和的时候采用多效强制循环蒸发器组合工艺。
硫酸钠的饱和浓度约为30%,因此采用MVR蒸发器需要控制出料浓度小于30%,即在浓度接近30%时须转入多效蒸发结晶器继续蒸发结晶。(2)预热升温后进入一效降膜蒸发器的分离器中,一效循环泵将一效分离器内的物料送入一效加热器顶部形成膜状向下流动,循环流动过程中与管外热交换,蒸发水分提升浓度。通过计算,在MVR蒸发器内蒸发出的水量要控制在2.2吨/小时左右,则在多效强制循环蒸发器内蒸发的水量约为2.5吨/小时左右。
(2)工艺特点
1)采用组合工艺可有效解决MVR蒸发器不能处理结晶物料的问题。
2)设备能耗较低,但设备投资相对较大。
(3)工艺能耗
1)第y级MVR浓缩4.4t/hr(蒸汽温升8℃)蒸发器
设备成本:450万元/套
运行成本:蒸汽消耗0.02吨/小时(机组密封补汽),蒸汽价格200元/吨,电耗220千瓦/时(主电机、循环泵、真空泵、凝水泵),平均电价0.6元/千瓦时;
每小时运行成本:0.04吨*200元/吨+220千瓦*0.6元/千瓦时=8+132=136元/小时;
约合处理每吨水的成本为32元。
2)第二级四效强制循环蒸发结晶器
运行成本:蒸汽消耗1.8吨/小时,电耗140KW/h
则每小时运行成本为1.8吨*200元/吨+140千瓦*0.6元/千瓦时=360+84=444元/小时;
约合处理每吨水的成本91元。
则每小时综合成本为136+444=580元/小时,约合每立方水消耗的费用为58元(不含离心机能耗)。
冷却结晶技术在废水处理中的应用
结晶是化学生产中的基本和普通过程之一。结晶过程分为三大类:冷却结晶,蒸发结晶和真空结晶。通过降低温度,冷却结晶基本上将溶质从晶体形式的饱和溶液中分离出来。实用新型内容本实用新型所要解决的技术问题是提供一种应用于废水的连续冷d结晶分离系统,使得经过处理后得到的纯水能够达到饮用水标准。该方法不会除去溶剂,但溶液将被冷却成过饱和溶液。它也适用于溶解度随温度升高而明显增加的物质。冷却结晶成为广泛使用的工业结晶方法。
冷却结晶技术的行业应用和优势
在工业中应用的冷却结晶技术通过冷却或冷冻热饱和溶液来实现结晶。与蒸发结晶相比,冷却结晶更适用于随着温度升高溶解度显着增加的物质。这些物质包括氯化铵,磷酸钠和芒硝。温度和溶解度的系数变化很大。根据权利要求1所述的应用于废水的连续冷d结晶分离系统,其特征在于,所述浓缩液排放管通过第y回流管(3)与冷却结晶器的底端相连。当温度下降时,这些物质的溶解度也会降低,并形成过饱和溶液。由于其热动力学不稳定性,溶质将从溶液中结晶出来。冷却结晶法利用溶液中各组分的溶解度随温度变化的差异(见图1)来达到材料分离的目的。在工业应用中,冷却结晶经常与浓缩技术结合,使溶液首先蒸发并浓缩形成饱和溶液。然后将饱和溶液冷却并结晶,通过离心分离获得溶质。
结晶脱硫废水处理系统
1.基于多级流化床结晶的脱硫废水处理系统,其特性在于,包括压滤系统,载体循环流化床,氢氧化镁晶种流化床,氢氧化钙晶种流化床,螯合剂循环流化床,微晶精滤装置,纳滤装置,氯h钠MVR浓缩结晶装置和硫酸钠冷d结晶装置,脱硫废水池的出口与压滤系统的进口相连,压滤系统的出口与载体循环流化床的进口相连,载体循环流化床的出口与晶种流化床的进口相连,晶种流化床的出口与螯合剂循环流化床的进口相连,螯合剂循环流化床的出口与微晶精滤装置进口相连,微晶精滤装置的出口与纳滤装置的进口相连,纳滤装置的出口分别与氯h钠MVR浓缩结晶装置及硫酸钠冷d结晶装置相连。在工业应用中,冷却结晶经常与浓缩技术结合,使溶液首先蒸发并浓缩形成饱和溶液。
2.根据权利要求1所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,压滤系统包括污泥泵,压滤机,压榨泵和滤液池,脱硫废水池的出口与污泥泵相连,污泥泵的出口与板框压滤机的进口相连,板框压滤机的出口与滤液池的进口相连,压榨泵的出口与板框压滤机相连,压榨泵为板框压滤机的进一步压滤提供0.8-1.2MPa的水压,污泥泵的压力控制在0.4-0.8MPa,压滤系统去除脱硫废水中悬浮物。根据权利要求1所述的连续生产方法,其特征在于,所述高硝盐水可以为化工废水,尤其是煤化工产生的废水,优选为经过预处理、膜处理以及MVR初步浓缩结晶的煤化工废水,所述高硝盐水中含Na2SO45%-15%(Wt:重量百分比)。
3.根据权利要求1所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,载体循环流化床包括依次连接的进水泵,载体吸附剂药桶,载体吸附剂循环箱和载体循环流化床,载体吸附剂药桶连接有加药泵,配有载体吸附剂的载体循环流化床,去除脱硫废水的z金属元素,并将载体吸附剂进行循环流化利用,将富集z金属的载体吸附剂进行固化、包埋无害化处置,或对z金属进行提取、精炼资源化处理。碱液药桶连接有加药泵,通过加药泵,将碱液输送到晶种流化床中,氢氧化钙晶种流化床碱液加药根据流化床pH值进行自动控制,pH控制在9。
4.根据权利要求1所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,晶种流化床包括氢氧化镁晶种流化床和氢氧化钙晶种流化床,载体循环流化床的出口与氢氧化镁晶种流化床的进口相连,氢氧化镁晶种流化床的出口与氢氧化钙晶种流化床的进口相连,氢氧化钙晶种流化床出口与螯合剂循环流化床的进口相连。但煤制油过程将产生大量的废水,而且废水中成分极为复杂,含有大量致a物质,有机物和腐蚀性盐类,极难处理。
5.根据权利要求4所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,氢氧化镁晶种流化床包括依次连接的进水泵,晶种流化床,氢氧化镁沉淀池和氢氧化镁晶种筛分干燥器,碱液药桶连接有加药泵,通过加药泵将碱液输送到晶种流化床中,氢氧化镁晶种流化床的碱液加药量根据流化床pH值进行自动控制,pH控制在8.0-9.5。脱硫废水含有杂盐体系,主要含有氯化钠、硫酸钠、硝s钠,在杂盐体系中,硫酸根的浓度是硝s根和氯离子浓度的40倍,是氯离子浓度的15倍,因此,要将氯化钠、硫酸钠和硝s钠分开的难度较大,比较理想的方式就是得到硫酸钠纯品,其他的为杂盐。
6.根据权利要求4所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,氢氧化钙晶种流化床包括依次连接的进水泵,晶种流化床,氢氧化钙沉淀池和氢氧化钙晶种筛分干燥器;碱液药桶连接有加药泵,通过加药泵,将碱液输送到晶种流化床中,氢氧化钙晶种流化床碱液加药根据流化床pH值进行自动控制,pH控制在9.5-11.5。冷却结晶技术的行业应用和优势在工业中应用的冷却结晶技术通过冷却或冷冻热饱和溶液来实现结晶。
7.根据权利要求4所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,螯合剂循环流化床,包括进水泵,螯合剂药桶,螯合剂循环箱和螯合剂循环流化床,螯合剂药桶连接有加药泵,螯合剂循环流化床,处理每吨螯合剂循环流化床进水螯合剂投加量控制在5kg-20kg,流化床出水进行部分回流循环流化,回流比例控制在1:10-100之间。通过降低温度,冷却结晶基本上将溶质从晶体形式的饱和溶液中分离出来。
8.根据权利要求4所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,微晶精滤装置为多介质过滤器,陶瓷膜多孔过滤器或管式微滤装置,微晶精滤装置去除螯合剂循环流化床形成的微晶物质,并将SDI控制在3以下。
9.根据权利要求1所述的基于多级流化床结晶的脱硫废水处理系统,其特性在于,纳滤装置通过高压进水泵连接微晶精滤装置,纳滤装置浓水端与浓水箱相连,放置浓水硫化n溶液,纳滤装置产水端与产水箱相连,放置产水氯化n溶液,纳滤装置分别与阻垢剂药桶,还原剂药桶和清洗剂药桶相连,阻垢剂药桶、还原剂药桶、清洗剂药桶均分别与自动清洗系统控制系统及压力表电气连接,自动清洗系统控制系统和操作平台电性连接,纳滤装置将微晶精滤装置的出水进行多级多段纳滤,产水箱与氯h钠MVR浓缩结晶装置相连,浓水箱与硫酸钠冷d结晶装置相连。所述分离洗涤装置(2)用于分离冰晶和浓缩液,并对冰晶进行洗涤。